不完美场景下的神经网络训练方法

2020/6/3 13:51:49 3652 
 

近几年,腾讯优图不断迭代数据和模型缺陷情况下神经网络的有效训练方法,相关技术已经在众多业务场景上(行人重识别,内容审核等)落地。本文整理自腾讯优图、腾讯云大学、AICUG和AI科技评论联合主办的「优Tech沙龙」,分享嘉宾为腾讯优图实验室GJ研究员Louis。

01 定义带噪学习目标

现实数据中存在的标签噪音(label noise)根据Feature可以分成两种:Feature independent noise和 Feature dependent noise。Feature independent noise是与特征无关的,比如将一只狗的图片误标记成汽车,狗和汽车没有什么相似特征,所以属于这类。Feature independent noise是与特征有关的,比如说狗和狼具有很多相似特征属性,标注人员可能把狗误标记成狼,那就属于这类。其实现实场景更多存在都是feature dependent noise。

噪音普遍存在,所以我们需要训练神经网络进行带噪学习,并且要能实现比较好的性能。那么noise label learning的目标是设计一个loss function,使得在noisy labels下训练得到的解,在性能上接近在clean labels下训练得到的解。












 
上一篇   下一篇
 
返回顶部
  技术支持
  关于创泽
  隐私条款
咨询热线
 
销售咨询
4006-935-088 / 4006-937-088
 
客服热线
4008-128-728

版权所有 @ 创泽智能机器人集团股份有限公司
运营中心 / 北京市·清华科技园九号楼5层
生产中心 / 山东省日照市开发区太原路71