利用时序信息提升遮挡行人检测准确度

2020/6/12 21:21:38 1560 
 

行人检测作为计算机视觉L域基本的主题之一,多年来被广泛研究。尽管先进的行人检测器已在无遮挡行人上取得了超过 90% 的准确率,但在严重遮挡行人检测上依然无法达到满意的效果。究其根源,主要存在以下两个难点: 

严重遮挡的行人框大部分为背景,检测器难以将其与背景类别区分; 

给定一个遮挡行人框,检测器无法得到可见区域的信息; 

Tube Feature Aggregation Network(TFAN)新方法,即利用时序信息来辅助当前帧的遮挡行人检测,目前该方法已在 Caltech 和 NightOwls 两个数据集取得了业界L先的准确率。


核心思路

利用时序信息辅助当前帧遮挡行人检测

目前大部分行人检测工作都集中于静态图像检测,但在实际车路环境中大部分目标都处于运动状态。针对严重遮挡行人的复杂场景,单帧图像难以提供足够有效的信息。为了优化遮挡场景下行人的识别,地平线团队提出通过相邻帧寻找无遮挡或少遮挡目标,对当前图像中的遮挡行人识别进行辅助检测。


实验新方法

Proposal tube 解决严重遮挡行人检测

如下图,给定一个视频序列,先对每帧图像提取特征并使用 RPN(Region Proposal Network)网络生成 proposal 框。从当前帧的某个 proposal 框出发,依次在相邻帧的空间邻域内寻找相似的proposal框并连接成 proposal tube。



 
上一篇   下一篇
 
返回顶部
  技术支持
  关于创泽
  隐私条款
咨询热线
 
销售咨询
4006-935-088 / 4006-937-088
 
客服热线
4008-128-728

版权所有 @ 创泽智能机器人集团股份有限公司
运营中心 / 北京市·清华科技园九号楼5层
生产中心 / 山东省日照市开发区太原路71