大模型与智能机器人结合,用语言指导机器人抓取物体

2023/9/6 14:29:33 3882 
 

从斯坦福大学的 VIMA 机器人智能体,到谷歌 DeepMind 推出首个控制机器人的视觉 - 语言 - 动作(VLA)的模型 RT-2,大模型加持的机器人研究备受关注。

当前,自监督和语言监督的图像模型已经包含丰富的世界知识,这对于泛化来说非常重要,但图像特征是二维的。我们知道,机器人任务通常需要对现实世界中三维物体的几何形状有所了解。

基于此,来自 MIT CSAIL 和 IAIFI 的研究者利用蒸馏特征场(Distilled Feature Field,DFF),将准确的 3D 几何图形与来自 2D 基础模型的丰富语义结合起来,让机器人能够利用 2D 基础模型中丰富的视觉和语言先验,完成语言指导的操作。

论文地址:https://arxiv.org/abs/2308.07931

具体来说,该研究提出了一种用于 6-DOF 抓取和放置的小样本学习方法,并利用强大的空间和语义先验泛化到未见过物体上。使用从视觉 - 语言模型 CLIP 中提取的特征,该研究提出了一种通过开放性的自然语言指令对新物体进行操作,并展示了这种方法泛化到未见过的表达和新型物体的能力。

研究团队用一个讲解视频详细介绍了 F3RM 方法的技术原理:



 
上一篇   下一篇
 
返回顶部
  技术支持
  关于创泽
  隐私条款
咨询热线
 
销售咨询
4006-935-088 / 4006-937-088
 
客服热线
4008-128-728

版权所有 @ 创泽智能机器人集团股份有限公司
运营中心 / 北京市·清华科技园九号楼5层
生产中心 / 山东省日照市开发区太原路71