![]() |
![]() |
DeepSeek-R1 \ Kimi 1.5 及类强推理模型开发解读,长思维链的推理提高模型的可解释性 |
||
2025/3/5 16:02:33 | ![]() |
|
DeepSeek-R1 开创RL加持下强推理慢思考范式新边界 ➢ DeepSeek-R1 Zero 及 R1 技术剖析 ➢ Pipeline 总览 \ DeepSeek-V3 Base \ DeepSeek-R1 Zero 及 R1 细节分析 ➢ RL 算法的创新:GRPO及其技术细节 ➢ DeepSeek-R1 背后的Insights & Takeaways:RL加持下的长度泛化 \ 推理范式的涌现 ➢ DeepSeek-R1 社会及经济效益 ➢ 技术对比探讨 ➢ STaR-based Methods vs. RL-based Methods 强推理路径对比 (DS-R1 \ Kimi-1.5 \ o-series) ➢ 蒸馏 vs. 强化学习驱动:国内外现有各家技术路线对比分析及Takeaways ➢ PRM & MCTS 的作用 ➢ 从文本模态到多模态 ➢ 其他讨论:Over-Thinking 过度思考等 ➢ 未来方向分析探讨 ➢ 模态穿透赋能推理边界拓展:Align-DS-V ➢ 合成数据及Test-Time Scaling: 突破数据再生产陷阱 ➢ 强推理下的安全:形式化验证 Formal Verification \ 审计对齐 Deliberative Alignment ➢ 补充拓展:DeepSeek-V3 解读
未来技术方向展望: 长思维链可解释性 Takeaways
![]() |
||
上一篇 下一篇 |
返回顶部 ∧ |
技术支持 |
关于创泽 |
隐私条款 |
|
版权所有 @ 创泽智能机器人集团股份有限公司 运营中心 / 北京市·清华科技园九号楼5层 生产中心 / 山东省日照市开发区太原路71 |